
1

Appendix C
The purpose of this report is to document the limitations of the Transmission Control

Protocol (TCP) when using the File Transfer Protocol (FTP) application in a controlled
network environment.

Using various testing methods, we tried to isolate each component influencing the
throughput for FTP transfers. We were also able to sort each test by sections. First, we’ll
characterize what the different Operating Systems’ TCP performances are. Next, we will
show how multiple access to files can affect performance of the FTP application. We will
also look at how different TCP windows sizes can affect performance. The file size and the
transfer time will be evaluated to see their influence on the throughput. We will end with
the file access impact on the Central Processing Unit (CPU) utilization for both the server
and the client.

1. Test Configuration

The tests were conducted at the Communication Research Centre (CRC). Figure 2.1
shows the local configuration used in the following tests. In the tests sections we will refer
to the computer name. More information on the machine’s configuration can be found in
Appendix A.

Figure 2.1 Test network configuration

2. Platform Influence on Transfer Rate

Test Overview

The purpose of this test is to determine what influence the Operating System (OS) of the
server/client can have on the network performance. The test consists in transferring a file
from/to a server using wu_ftp (FTP server for Linux) and a client using ncftp (FTP client for
Linux) on Linux and Cute FTP (FTP client for Windows) and SERV-U FTP (FTP server for

2

Windows) on Windows. The same file is sent between computers using different operating
systems. These tests were done with a 100MB File (to make sure the transfer rate has
stabilized to its maximum) on the Gamma and the Lambda machines going through a
100Mbps link. The measurements were also taken with different transmit/receive buffer
sizes within the ftp client application (It’s not the same thing as TCP Window Sizes). These
buffers refer to the space in RAM where the application puts the information from the disk
before sending/saving it. The last result was taken from Kappa (dual CPU) to Gamma to test
if symmetric multi-processors (SMP) usage affects the transfer speed.

Results
Linux-Linux 24 Mbps (Disk) 80 Mbps (RAM)
Linux-Windows 8 Mbps (with 1k Buffer)
Linux-Windows 5.6 Mbps (with 4k Buffer)
Linux-Windows 5.8 Mbps (with 16k Buffer)
Windows-Linux 8 Mbps (with 1k Buffer)
Windows-Linux 7.2 Mbps (with 4k Buffer)
Windows-Linux 3.2 Mbps (with 16k Buffer)
Windows-Windows 16 Mbps (Disk) 60 Mbps (RAM)
Linux-Linux (SMP) 5 Mbps

Analysis
One can denote a big difference when looking at the results of Linux-Linux and

Windows-Windows situation. Having a slightly more efficient file system (ext2fs) and
somewhat different caching algorithms probably gives Linux the edge here. If we use an
analogy by comparing the running application as a pile of dirt that needs to be carried away
to fill a hole, caching corresponds to the size of the shovel used to carry the dirt. Indeed,
caching acts as a transport medium from the memory to the Central Processing Unit (CPU) so
bigger cache means more operations going to the CPU at the same time, thus increased
performance. There are different types of caching, (RAM, Disk, and Pipeline), the difference
is that they are links (buffers) between different devices. The Linux disk caching algorithms
are caching methods used to write or read the disk.

When we look at Windows-Linux / Linux-Windows transfer rates we can see that they
are even slower than the Windows-Windows one due to different TCP implementation.
Operating systems like Rhapsody, AIX, and Windows behave like each other and presume
that the slow start feature of TCP will initially send two segments (information packets).
According to RFC 2001(Request For Comment for TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms) TCP slow start should send only one
segment. Linux follows this RFC while Windows does not and the following situation
unfolds:

non-RFC OS sends ftp request.
Linux sends the first segment and waits for an ACK.
non-RFC OS waits 200ms for the seconds segment.
non-RFC OS gives up and sends ACK.
Linux sends more data...

The 200ms delay is a long time for a machine that is less than 1ms away. You can test
this by writing a little application in Linux that listens to a port with a streaming socket.
Streaming sockets are also known as “connected sockets” mean that you have to “connect”
a port before sending information. Many applications use this kind of socket including the
“telnet” and “FTP” application. If you launch a telnet session from the Windows
environment to that application’s port, you will notice that when you write a string and
press the CR, that string will appear on the server application. But, if you do the same thing
in Windows, characters will appear to be read one at a time because of the TCP stack (buffer
where received data is processed) delay under windows.

In Linux, the major performance problems are also with the TCP stack, because it is a
single threaded in the 2.2.x Linux kernels, and has large-grained kernel locks that degrade

3

multiprocessor performance. That means that it creates a virtual file (lock file) to reserve the
resource. While this might be an advantage over other Oses, thanks to its guaranty that
multiple applications cannot access the device at the same time; it also degrades
performance. The Linux community chose to keep the stability instead of trying to achieve
higher performance. If you look at Appendix C (Open Benchmark’s results) you will see that
Windows NT server achieved a higher performance. This is because SMPs systems have a
better performance under Windows NT while SMPs kernel support under Linux was
experimental. This is supposed to be fixed with the kernel 2.4+ release because they had to
change the whole network socket handling code to improve performance and generate
faster threads.

3. File Access Influence on Transfer Rate

Test Overview
The purpose of this test is to determine the influence of multiple file access on the

bandwidth of a system. The test was done on Saturn downloading from Gamma going
through a 10Mbps link, transferring a 100MB file, using optimal TCP window sizes, and with
both computers running Linux.

Graphs
3.1.1 Download Average Throughput VS Number of users on a 10Mbps link

Average Throughput VS Number of users on a 10Mbps link

0

1

2

3

4

5

6

1 2 3 4

Number of users

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 4.2.1 Download Throughput VS Number of Users on a 10Mbps link

This graphic shows that average throughput decreases significantly with the number of
users. This throughput is the throughput that each user has. It’s not surprising when we see
the shape of the curve in Figure 4.2.1, because the total bandwidth is shared between each
user and that is why the average bandwidth gradually decreases.

4

3.1.1. Total Throughput VS Number of users on a 10Mbps link

Figure 4.2.2 Download Throughput VS Number of Users on a 10Mbps link

For the total throughput we can see that the transfer takes its peak between 2 and 3
users. The same phenomenon can be observed on the results from the Mindcraft Open
Benchmark tests (Appendix C)

Analysis

As we expect, the bandwidth is shared between each user (Figure 4.2.1). The results
(Figure 4.2.2) also show that maximum throughput (transfer speed) is achieved when there
are 2 hits to the file. After that, you see a lot of decrease in the average bandwidth as well
as in the total bandwidth. Total bandwidth may be higher than single hit bandwidth
because combined bandwidth takes up all available bandwidth alternating between each
packet received. Also, when you have only one connection you must ensure that this
connection is the fastest and, because FTP takes time to send an acknowledgement (ACK)
packet, you can’t achieve optimal transfer rates.

4. Settings Influence on Transfer Rate

The purpose of this test is to see if different settings on the machine can influence the
performance for multiple hits and different file size results. This test consists of transferring
files of different sizes between computers using the windows auto-sizing routines. This
means that it detects the optimal window size for the transfer. By doing that, TCP transfers
can get up to 10% more of speed (See test results by Mindcraft in Appendix C). The tests
were done between Saturn and Gamma on a 10Mbps link.

5

Results

Throughput VS TCP Window Size

0
1
2
3
4
5
6
7
8
9

10

0 16 32 48 64 80 96 112 128

Windows Size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 5.1.1 Throughput VS TCP Window Size

Analysis
By looking at the results, we can tell that the best performance is achieved when we

have a window size around 8KB-12KB but theses results will change depending on the
latency, the maximum bandwidth availability and the network load. We can also notice
that, usually, when transferring small files the window size is smaller than the size of the
window used to transfer large files. We can also see that when there are multiple users the
TCP window size seems to be bigger than when there’s only one user transferring a file. On
the local interface we can see that the maximum achieved throughput around 60.36Mbps
for total and 35.76Mbps for average this is due to file size (next section) and total
bandwidth distribution (like we saw earlier). The 60.36Mbps throughput corresponds to a
7.52 MB/s rate that is critical to the HD speed (7 MB/s sequential read/write). This limit is
imposed by the disk speed and the total throughput will never be higher if we don’t change
the disks to have improved transfer rates.

5. File Size and Time Influence on transfer rate

Test Overview
These tests were also done between Saturn and Gamma on a 10Mbps link. They were

also done locally on Saturn to verify the true limitations without going through the
network.

6

Graphs

5.1.1. Throughput vs Time for a 10Mbps link

Throughput VS Time
for a FTP transfer on a 10Mbps link

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000

Time (s)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 6.2.1 Throughput Vs Time for a 10Mbps link

5.1.2 Throughput vs Time for local loopback

7

Throughput VS Time
for a FTP transfer for local loopback

0

2

4

6

8

10

12

1 10 100 1000

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 6.2.2 Throughput Vs Time for local loopback

5.1.3 File Size

Throughput VS FTP File Size
on a 10 Mbps link

0

1

2

3

4

5

6

7

10 100 1000 10000 100000

File Size (Kb)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 6.2.3 Throughput Vs FTP File Size on a 10 Mbps link

Analysis
If we look at the bandwidth for a certain time scale (Figure 6.2.1 and Figure 6.2.2) we

can see that it starts slowly and goes faster to finally decrease a little in speed and achieve a
stable transfer rate. File size has an indirect influence on the transfer rate because of the
way FTP is designed. As we can see in this graphic (Figure 6.2.3), FTP has an optimal transfer
window for files between 1MB and 7MB. For files 10KB and less, the transfer doesn’t have
the time to reach its peak. On the Bandwidth VS Time graphs, FTP starts at a very low speed
than increases to reach a maximum. After that, it stabilizes to a specific throughput. File
size, itself, doesn’t affect the throughput . If the time it takes to transfer the file matches
the peak on the curve than that file size will be the optimal file size to transfer because the
transfer will not have the time to slow down before the file transfer ends.

8

6. File Access Influence on CPU Utilisation

Graph

CPU Idling VS Number of users

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of users

C
P

U
 Id

lin
g

(%
)

CPU Idling Server CPU Idling Client

Figure 7.1.1 CPU Utilization VS Number of users

Analysis
The CPU usage for the client application gets higher and higher to a point that it

stabilizes to certain levels. It is because Linux knows how to do multitasking (unlike
Windows) and the priority of the ftp client is low to take only the available CPU resources.
We can see that once we’ve reached 4 sessions the CPU usage doesn’t go any lower this is
because whatever number of sessions are running the kernel keeps only 4-6 sessions running
at a time while the others are sleeping. This causes a drop in the throughput but prevents
CPU saturation. The server on the other end takes up all available CPU usage because it’s a
high priority process. CPU use for 1,2,3,4 sessions are the same because the CPU’s portion
taken by the ftp server daemon is shared between sessions when there are more than one.
After 4 sessions the CPU usage starts to rise again because CPU is shared between each
session and it keeps only 4-6 sessions running at a time. (Ex. 50% total usage with 4 sessions
= 12.5% per process 4 running process = 0% (idling) and the same 50% total usage with 10
sessions = 5% per sessions with 4 running process = 30% idling (50%(total) - 20%(running))

7. Limitations

Local Loopback Limits

When a socket is created on this interface it exists with theses characteristics
• Theoretical
1. Speed = Infinite
2. MTU= Infinite
• Practical
1. Bus speed = 100 MHz (400 MB/s max.)
2. Finite memory access time (285 MB/s max.)
3. Finite hard disk access limited

9

4. Finite kernel interruption responses limited
5. Finite CPU usage limited

The speed of a loopback can differ from a computer to another. Indeed, I got different
speeds (usually for only 1 file around 10 Mb is where you see the biggest difference) with
my results when I downloaded at Gamma, which is faster CPU/HD and runs less background
tasks, I got better results than what I got on Saturn (my workstation). The difference was
around 10Mbps between the two for a 10Mb file and for a 100Mb file the difference was
unnoticeable. That’s because the peak on the time transfer is really dependent on the
CPU/HD Speed. The following results are examples taken from Saturn. The other results can
be found in Appendix A (Machine Information).

CPU Limitations

Figure 8.2.1 CPU Benchmark
This is a benchmark for the CPU used in the tests. CPU saturation is what can be limiting

the bandwidth if there are too much forked processes or threads.
The Arithmetic Logic Unit (ALU) is measured in MIPS (Million instructions per second)

and is responsible for executing arithmetic and logical operations such as (ADD, XOR, AND,
etc.) The Floating Point Unit (FPU) is measured is MFLOPS (Million float operation per
second) and is responsible of all floating-point operations. So the higher these are, the
faster the computer can process the information.

Memory Access Speed

Figure 8.3.1 Memory Access Benchmark

Memory is not what’s limiting the bandwidth but it always helps to managing multiple
tasks if you have more memory. When you have multiple processes loaded into the memory,
the memory usage can be maxed out. This wasn’t tested because I had problems saturating
memory with Linux. Linux does multitasking too well to let a process consume too much

10

memory. The problem occurs more often under Windows because this OS cannot manage
memory and leaves the responsibility to the applications. Since Windows has no control over
the memory, if the application leaks or fails to release memory then you can get out of
memory messages. Also, the faster the memory is the easier it is to transfer information.
When doing transfers from ram to ram you can easily reach the networking media limit
before reaching the memory limit. Memory is not considered a priority in TCP transfer
because it does not affect the speed if it is not full. If it becomes full (out of “working”
memory), the whole system will slow down because and so will the throughput.

Network Performance for RAW sockets

Figure 8.4.1 Network Benchmark

You can see that the network performance results differ from the FTP results. This in
fact is the real network performance if we only look at the Protocol/Transport layers
without the application influence. These results give a good overview of what’s the
available bandwidth on that device. Results like these can also be obtained using Iperf on
Linux. I ran Iperf on the machines used for tests and the results were around 9.1Mbps for my
workstation to the gamma FTP Server. Also it was around 85Mbps from lambda to gamma.
We also tested the link from CRC to NRC, which gave a result of 8.2Mbps. With these results
we can testify that network performance is fine and it’s the application/OS layer that are
imposing the limitations.

Hard Drive access performance

Figure 8.5.1 Hard Drive Access Benchmark

These are the hard drive access limitations. As we saw in the results, the Hard Disk has a
big role in the file transfer limitations. It is what is limiting the transfer speed from going
higher than 24Mbps on the test bed PCs.

11

8. Possible Solutions

ÿ Testing File Transfers between RAMdisks would eliminate the HD limitations and could
provide further testing information.

ÿ Streaming Myth: Streaming will not improve the server’s performance if its
performance is limited by the hard disk speed. Indeed, the streaming process buffers
data to the memory before sending it. It is dependent on the hard disk speed
because it has to move this data to memory. It also needs to deal with multiple file
access and that why it usually doesn’t keep much of that data in memory before
streaming the rest. Where it does make a difference is to the user’s point of view. When
you stream data, you don’t have to write the data to the disk so it is only the server’s
HD and link speed that sets the maximum rate.

9. Conclusion

In conclusion, our bandwidth is limited at 24Mbps – 32Mbps range (5 MB/s), due to the
hard drive read/write speed. In solution to this, it is recommended to update to another
technology either 7200rpm EIDE drives (16MB/s) or Ultra-SCSI (40MB/s) drives. The first one
can be plugged in directly while the second one needs a SCSI controller card if your
computer doesn’t have one already. Faster transfer speed will mean more expenses. If you
use streaming, you only need to upgrade the server’s harddisks and that might be the best
solution so far.

10. Machine Information

Saturn
Name Saturn
Processor(s) Processor(s) Intel Pentium III @ 550MHz
ALU: 1487 MIPS FPU: 735 MFLOPS
Installed Memory 256MB (72% true allocated load)
Memory Access Speed:
ALU: 285MB/s FPU: 325MB/s
Network Raw Socket Throughput: 928kB/s = 7.42Mbps
Hard Drive Access Speed:
Sequential Read: 8MB/s = 64Mbps Random Read: 4MB/s = 32Mbps
Sequential Write: 7MB/s = 56Mbps Random Write: 7MB/s = 56Mbps

Gamma
Name Gamma
Processor(s) Processor(s) Intel Pentium III @ 600MHz
ALU: 1629 MIPS FPU: 806 MFLOPS
Installed Memory 256MB (52% true allocated load)
Memory Access Speed:
ALU: 286MB/s FPU: 329MB/s
Network Raw Socket Throughput: 10MB/s = 80Mbps
Hard Drive Access Speed:
Sequential Read: 8MB/s = 64Mbps Random Read: 4MB/s = 32Mbps
Sequential Write: 7MB/s = 56Mbps Random Write: 7MB/s = 56Mbps

12

 Lambda
Name Lambda
Processor(s) Processor(s) Intel Pentium III @ 750MHz
ALU: 2050 MIPS FPU: 1018 MFLOPS
Installed Memory 256MB (50% true allocated load)
Memory Access Speed:
ALU: 193MB/s FPU: 250MB/s
Network Raw Socket Throughput: 78Mbps
Hard Drive Access Speed:
Sequential Read: 8MB/s = 64Mbps Random Read: 3.5MB/s = 32Mbps
Sequential Write: 7MB/s = 56Mbps Random Write: 7MB/s = 56Mbps

Kappa
Name Kappa
Processor(s) Processor(s) Intel Pentium III @ 866MHz
ALU: 2250 MIPS FPU: 1234 MFLOPS
Installed Memory 256MB (50% true allocated load)
Memory Access Speed:
ALU: 285MB/s FPU: 325MB/s
Network Raw Socket Throughput: 82Mbps
Hard Drive Access Speed:
Sequential Read: 8MB/s = 64Mbps Random Read: 4MB/s = 32Mbps
Sequential Write: 7MB/s = 56Mbps Random Write: 7MB/s = 56Mbps

11. Test Results

Results For File Access Influence on Transfer Rates

9.1.1. Throughput for a 10Mbps link Vs number of clients
1 User 2 Users 3 Users 4 Users

Upload:5.13Mbps Upload:
avg:3.11Mbps
total:6.30Mbps

Upload:
avg:2.11Mbps
total:6.33Mbps

Upload:
avg:2.07Mbps
total:8.22Mbps

Download:4.79Mbps Download:
avg:2.36Mbps
total:4.72Mbps

Download:
avg:1.53Mbps
total:4.59Mbps

Download:
avg:1.22Mbps
total:4.89Mbps

These results were obtained on a 10Mbps link with a Pentium III 550 MHz running Linux on
both ends. The file transferred was a binary file of 500 MB.

9.1.2. Throughput for a local loopback Vs number of clients
1 User 2 Users 3 Users 4 Users

Upload:14.96Mbps Upload:
avg:7.18Mbps
total:14.36Mbps

Upload:
avg:7.12Mbps
total:21.4Mbps

Upload:
avg:7.148Mbps
total: 28.6Mbps

Download:14.80Mbps Download:
avg:4.2Mbps total:
8.4Mbps

Download:
avg:4.38Mbps
total:13.14Mbps

Download:
avg:3.060Mbps
total:12.24Mbps

13

These results were obtained on the local loopback interface in Linux. The file transferred
was a binary file of 500 MB and the tests were done on Saturn. This interface is network
card independent and is used to test the application capabilities. The limitations of this kind
of interface are listed in the limitation section of this document.

Results for Settings Influence on Transfer Rate

9.1.3. Throughput results for different file sizes / hits on a 10 Mbps link.
10Mbps 1 User 2 User 3 User 4 User
10 MB File Upload:5.62Mbps Upload:

Avg:3.58Mbps
total:6.45Mbps

Upload:
avg:2.37Mbps
total:7.12Mbps

Upload:
avg: 2.51Mbps
total: 9.2Mbps

Download:4.99Mbps Download:
avg:2.99Mbps
total:5.98Mbps

Download:
avg:1.94Mbps
total:5.83Mbps

Download:
avg:2.03Mbps
total:8.140Mbps

100 MB File Upload:5.13Mbps Upload:
avg:3.2Mbps
total:6.03Mbps

Upload:
avg:2.14Mbps
total:6.41Mbps

Upload:
avg:2.08Mbps
total: 6.26Mbps

Download:4.8Mbps Download:
avg:2.47Mbps
total:4.94Mbps

Download:
avg:1.68Mbps
total:5.03Mbps

Download:
avg:1.47Mbps
total: 5.88Mbps

1000 MB File Upload:5.13Mbps Upload:
avg:3.11Mbps
total:6.30Mbps

Upload:
avg:2.11Mbps
total:6.33Mbps

Upload:
avg:2.07Mbps
total: 6.22Mbps

Download:4.79Mbps Download:
avg:2.36Mbps
total:4.72Mbps

Download:
avg:1.53Mbps
total:4.59Mbps

Download:
avg:1.22Mbps
total: 4.89Mbps

9.1.4. Throughput results for different file sizes / hits on a local loopback link.
Local 1 User 2 User 3 User 4 User
10 MB File Upload: 35.76Mbps Upload:

avg:14.8Mbps
total:29.6Mbps

Upload:
avg:11.84Mbps
total: 34.52Mbps

Upload:
avg:15.09Mbps
total: 60.36Mbps

Download:
25.28Mbps

Download:
avg:20.16Mbps
total:40.32Mbp
s

Download:
avg:10Mbps
total: 30Mbps

Download:
avg:14.18Mbps
total: 56.72Mbps

100 MB File Upload:
15.44Mbps

Upload:
avg:13.84Mbps
total:27.68Mbp
s

Upload:
avg:14.4Mbps
total: 43.2Mbps

Upload:
avg:5.44Mbps total:
21.74Mbps

Download:
14.88Mbps

Download:
avg:8.8Mbps
total:17.6Mbps

Download:
avg:5.45Mbps
total: 16.34Mbps

Download:
avg:7.83Mbps
total:31.33Mbps

1000 MB File Upload: 14.96Mbps Upload:
avg:7.18Mbps
total:14.36Mbp
s

Upload:
avg:12.8Mbps
total: 38.4Mbps

Upload:
Avg:7.154Mbps
total: 28.6Mbps

Download:
14.80Mbps

Download:
avg:14.2Mbps
total:28.4Mbps

Download:
avg:4.38Mbps
total: 13.14Mbps

Download:
avg:3.060Mbps
total:12.242Mbps

14

Results for File Size and Time Influence on transfer rate

9.1.5. Table for Throughput vs Time on a 10 Mbps link
Time(s) Throughput(Mbps)

1 1.7
2 4.18
3 4.13
4 4.07
5 3.97
6 3.89
7 3.86
8 3.83
9 3.73

10 3.69
20 3.69
30 3.68
40 3.67
50 3.67
60 3.65
70 3.64
80 3.63
90 3.58

100 3.57
200 3.57
300 3.57
400 3.56
500 3.57
600 3.58
700 3.56
800 3.57
900 3.56

1000 3.56

9.1.6. Table of results for Throughput VS Time for a local loopback
Time BandWidth

1 3.2
2 9.76
3 10.72
4 9.36
5 8.88
6 9.2
7 8.8
8 9.04
9 8.88

10 8.56
20 8.56

15

30 8.56
40 8.64
50 8.64
60 8.56
70 8.56
80 8.56
90 8.64

100 8.56
200 8.64
300 8.56
400 8.56
500 8.56
600 8.64
700 8.64
800 8.56
900 8.56

1000 8.56

Table of results for the Influence of File Size on Throughput
10 Mbps link
File Size (Kb) BandWidth 1st

Time
BandWidth 2nd Time BandWidth 3rd

Time
Average

10 2.53 3.41 3.58 3.173333
50 4.85 5.96 5.93 5.58

100 5.64 5.97 6.29 5.966667
500 6.37 6.21 6.421 6.333667

1000 6.57 6.39 6.42 6.46
5000 6.49 6.48 6.51 6.493333

10000 5.75 6.45 6.41 6.203333
50000 5.63 5.606 5.76 5.665333

100000 5.432 5.53 5.46 5.474

Results for File Access Influence on CPU Utilization

9.1.7. Table of CPU Usage (Idling percentage) vs Number of users
Number of users CPU utilisation Server(idle)

%
CPU Utilisation Client(idle)
%

1 3.1 82.3
2 1.7 78.5
3 3.3 68.7
4 3.4 60.5
5 12.2 62.4
6 15.6 66.7
7 18.1 54.8
8 19.2 63.1
9 21 62.7

10 38.6 66.2

